
Demystifying the First Few
Minutes After Compromising a

Container
Stuart McMurray

BSides Munich ~ 11 November 2024

Code: github.com/magisterquis/dtffmacac
1

https://github.com/magisterquis/dtffmacac

Hi, Mom :)
2

Demystifying the First Few
Minutes After Compromising a

Container
Stuart McMurray

BSides Munich ~ 11 November 2024

Code: github.com/magisterquis/dtffmacac
3

https://github.com/magisterquis/dtffmacac

$ whoami

● Stuart McMurray
● Lead Offensive Security Engineer
● Unix Nerd
● Twitter/Discord: @magisterquis
● Github: github.com/magisterquis
● Libera: stuart
● Not affiliated with Docker or any other

Container anything

/* TODO: Twitter QR code here */

4
Code: github.com/magisterquis/dtffmacac

https://github.com/magisterquis/dtffmacac

$ whoami

● Stuart McMurray
● Lead Offensive Security Engineer
● Unix Nerd
● Twitter/Discord: @magisterquis
● Github: github.com/magisterquis
● Libera: stuart
● Not affiliated with Docker or any other

Container anything

/* TODO: Twitter QR code here */

5
Code: github.com/magisterquis/dtffmacac

Red Teamer

https://github.com/magisterquis/dtffmacac

Disclaimers

1. The views and ideas expressed in this talk belong to the speaker and do not
necessarily reflect the official policy or position of any current or past
employer.

2. Poking at Containers should be done with care. Be sure to consult with
appropriate technical, management, and legal advisors before attempting any
such activities.

6

Compromising Containers?

7

Compromising Containers?Philosophical Rambling
- Mrs. McMurray

8

What's Compromise?

● Where my application runs and I don't worry about Linux things
○ Application Developer

Suspicious amounts of space...

9

Locked-Down Something

10

Nefarious Person

11

Oh Dear

12

Compromised.

13

What's a Container?

● Where my application runs and I don't worry about Linux things
○ Application Developer

Suspicious amounts of space...

14

What's a Container?

● Where my Linux application runs and I don't worry about Linux things
○ Application Developer

Suspicious amounts of space...

15

What's a Container?

● Where my application runs all nice and self-contained
○ Application Developer

16

What's a Container?

● Where my application runs all nice and self-contained
○ Application Developer

IOU: A better container definition

18

Self-Contained Application Thing Compromise: Why?

1. It's where things run these days.

¯_(ツ)_/¯

19

Self-Contained Application Thing Compromise: Why?

1. It's where things run these days.

¯_(ツ)_/¯

20

Self-Contained Application Thing Compromise: Why?

1. It's where things run these days.

¯_(ツ)_/¯

21

Targetspace

22

Target - A Single Server

23

Target - A Single Server and a Hacker

24

Target - A Not Important Server

25

Target Container - An HTTP Checker

26

Target Container 2 - A Password Store

27

Target Container 2 - A Password Store

28

Running Containers

29

Running Containers

30

Running Containers

31

Initial Compromise

32

Target - The HTTP Checker

33

Excellent Web Devs Were Hired

34

Normal HTTP Checker Operations

35

Normal HTTP Checker Operations

36

This Looks Injectable...

37

This Looks Injectable...

38

Is This Injectable...

39

This Was Injectable!

40

This Was Injectable!

41

HTTP Checker Container

42

HTTP Checker Container, Compromised

43

What's a Container? (v2)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

Probably more to the story...

44

What's a Container? (v2)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

Probably more to the story...

45

What's a Container? (v2)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

Probably more to the story...

46

What's a Container? (v2)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

Probably more to the story...

47

C2

48

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2..
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

49

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2..
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

50

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2..
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

51

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2..
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

52

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

53

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

54

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

55

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

56

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

57

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Use what's there (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

58

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Use what's there (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

59

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Use what's there (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

60

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Use what's there (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

61

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Use what's there (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

62

● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2...
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Use what's there (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what
you say

C2 in a Nutshell I'm a Teal
Deer...

63

Ask the HTTP Checker to Check HTTP

64

Under the Hood: a Shell

65

...a Shell?

66

A Shell!

67

Connecting to Us

68

Connecting to Us with Curl

69

Connecting to Us with Curl for Command-Sending

70

Connecting to Us with Curl for Output-Receiving

71

Shell: Process + Bidirectional Comms

72

Shell: Input...

73

Shell: Output :)

74

Our Only "Hacker" Tool: curlrevshell

75

https://
github.com/
magisterquis/
curlrevshell

http://github.com/
http://github.com/
http://github.com/
http://github.com/

Setting up a Listener

76

Setting up a Listener

77

Setting up a Listener

78

Setting up a Listener

79

Setting up a Listener

80

Setting up a Listener

81

A Reverse Shell, With Curl

82

A Reverse Shell, With Curl

83

A Reverse Shell, With Curl

84

A Reverse Shell, With Curl

85

A Reverse Shell, With Curl

86

A Reverse Shell, With Curl

87

Shell Injection

88

Shell Injection

89

Shell Injection

91

Shell Injection

92

Shell Injection

93

Shell Injection

94

Shell?

95

Shell!

97

Shell, The First Second

98

Shell, The First Second

101

Shell, The First Second

102

Shell, The First Second

103

Shell, The First Second

104

Shell, The First Second

105

Shell, The First Second

106

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

Stay tuned...

107

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

Stay tuned...

108

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

Stay tuned...

109

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

What's that really mean?

110

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

But first, a Side Quest!

111

/proc

112

Situational Awareness - What We Tried

113

Situational Awareness - What We Wanted

114

Situational Awareness - What We Kinda Expect

115

/proc to the Rescue!

● A Filesystem
○ Not "real" files

● A Window into the Kernel
● With a File-like Interface
● Info about...

○ Processes
○ Devices
○ The Network
○ The Kernel Itself

116

What's /proc?

● A Filesystem
○ Not "real" files

● A Window into the Kernel
● With a File-like Interface
● Info about...

○ Processes
○ Devices
○ The Network
○ The Kernel Itself

117

What's /proc?

● A Filesystem
○ Not "real" files

● A Window into the Kernel
● With a File-like Interface
● Info about...

○ Processes
○ Devices
○ The Network
○ The Kernel Itself

118

What's /proc?

● A Filesystem
○ Not "real" files

● A Window into the Kernel
○ With a File-like Interface

● Info about...
○ Processes
○ Devices
○ The Network
○ The Kernel Itself

122

What's /proc?

● A Filesystem
○ Not "real" files

● A Window into the Kernel
○ With a File-like Interface

● Info about...
○ Processes
○ Devices
○ The Network
○ The Kernel Itself

123

What's /proc?

● A Filesystem
○ Not "real" files

● A Window into the Kernel
○ With a File-like Interface

● Info about...
○ Processes
○ Devices
○ The Network
○ The Kernel Itself

125

What's /proc?

● A Filesystem
○ Not "real" files

● A Window into the Kernel
○ With a File-like Interface

● Info about...
○ Processes
○ Devices
○ The Network
○ The Kernel Itself

126

● A Filesystem
○ Not "real" files

● A Window into the Kernel
○ With a File-like Interface

● Info about...
○ Processes
○ Devices
○ The Network
○ The Kernel Itself

What's /proc?

127

What's /proc?

● A Filesystem
○ Not "real" files

● A Window into the Kernel
○ With a File-like Interface

● Info about...
○ Processes
○ Devices
○ The Network
○ The Kernel Itself

128

Us and a Shell

129

Shell, What's Going On?

130

Processes Are Running

131

Shell Really Spawns ps

132

ps Reads Files in /proc

133

Files in /proc Describe Processes

134

We Get a Process Listing

135

We Didn't Get a Process Listing

136

Missing ps

137

Cut Out the Middleman

138

Shell Does the Opening

139

Kernel Really Does the Opening

140

Shell Connects File to Stdin

141

Shell Turns Into cat

142

cat Reads Stdin

143

Proxies Back to Us

144

Process Info without ps

145

Process Info without ps

146

Process Info without ps

147

Process Info without ps

148

Process Info without ps

149

Process Info without ps

150

Process Info without ps

151

Process Info without ps

152

Process Info without ps

153

Interesting Files in /proc

● /proc/$pid/exe
○ Symlink to $pid's executed binary

● /proc/$pid/cmdline
○ $pid's arguments (argv)

● /proc/$pid/environ
○ $pid's environment variables

● /proc/$pid/maps
○ $pid's memory regions and mapped files

● /proc/$pid/mem
○ Interface to $pid's memory (use lseek)

● /proc/$pid/maps
○ Funny symlink to $pid's root directory

● /proc/$pid/fd/
○ $pid's open files

● /proc/net/tcp{,6}
○ TCP sockets

● /proc/mounts
○ Mounted filesystems

● /proc/self
○ Symlink to opening process' /proc/$pid

● /proc/sys/kernel/core_pattern
○ Core dump "location" pattern

● /proc/partitions
○ Disk partitions

● /proc/net/tcp{,6}
○ TCP sockets

155

Interesting Files in /proc

● /proc/$pid/exe
○ Symlink to $pid's executed binary

● /proc/$pid/cmdline
○ $pid's arguments (argv)

● /proc/$pid/environ
○ $pid's environment variables

● /proc/$pid/maps
○ $pid's memory regions and mapped files

● /proc/$pid/mem
○ Interface to $pid's memory (use lseek)

● /proc/$pid/maps
○ Funny symlink to $pid's root directory

● /proc/$pid/fd/
○ $pid's open files

● /proc/net/tcp{,6}
○ TCP sockets

● /proc/mounts
○ Mounted filesystems

● /proc/self
○ Symlink to opening process' /proc/$pid

● /proc/sys/kernel/core_pattern
○ Core dump "location" pattern

● /proc/partitions
○ Disk partitions

● /proc/net/tcp{,6}
○ TCP sockets

tl;dr - /proc has
Systemsy "Files"

156

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

But first, a Side Quest!

157

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

But first, a Side Quest!

158

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

What's that really mean?

159

What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

What's that really mean?

Bet we're
gonna see

/proc...

160

Inside the Container

161

Where are we?

162

Where are we, container-style?

163

Where are we, container-style?

164

Where are we, container-style?

165

Where are we, container-style?

166

Where are we, container-style?

167

Where are we, container-style?

168

Where are we, container-style?

169

Where are we, container-style?

170

Where are we, container-style?

171

Where are we, container-style?

172

Where are we, container-style?

173

Where are we, container-style?

174

Where are we, container-style?

175

Secrets in argv?

176

Secrets in argv?

177

"Best" Practice: Credentials via Environment

178

"Best" Practice: Credentials via Environment

179

"Best" Practice: Credentials via Environment

180

"Best" Practice: Credentials via Environment

181

"Best" Practice: Credentials via Environment

182

Bester Practice: Credentials via Files

183

Bester Practice: Credentials via Files

184

Bester Practice: Credentials via Files

185

Bester Practice: Credentials via Files

187

Bester Practice: Credentials via Files

188

Bester Practice: Credentials via Files

189

Bester Practice: Credentials via Files

190

No netstat, No Problem

195

No netstat, No Problem

196

What Does "Inside" Mean?

197

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

198

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

199

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

200

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

201

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

205

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

206

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

207

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

208

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

209

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

210

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

212

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting
the "normal" set

213

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp/AppArmor Rules

tl;dr - Escaping is getting
the "normal" set

214

Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp/AppArmor Rules

tl;dr - Escaping is getting
the "normal" set

215

Privileged?

216

Fair Warning

217

Superpowers?

218

Superpowers.

Superpowers

220

Superpowers

chmod 777 + sudo

221

chmod 777 + sudo -> --privileged

222

What's a Container? (v4)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

223

What's a Container? (v4)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

224

What's a Container? (v4)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

225

Container Escape

227

Techniques

● Docker/Kubernetes/Contanied/Bottlerocket/etc Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

228

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

229

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

230

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

231

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

232

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

233

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

234

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

235

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

236

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

237

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

238

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

239

Techniques

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

240

Techniques

241

● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

tl;dr - Something inside
which makes a process

outside

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
a. Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

a. Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
a. With argv from the pattern
b. As root
c. As a child of [kthreadd]
d. With the default cgroup/namespaces

5. We get command execution!

242

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

243

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

244

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

245

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

246

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

247

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

248

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

249

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

250

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

251

/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

tl;dr - Run non-container
code with the core dump

handler

252

/proc/sys/kernel/core_pattern - PoC

253

/proc/sys/kernel/core_pattern - PoC

254

/proc/sys/kernel/core_pattern - PoC

255

/proc/sys/kernel/core_pattern - PoC

256

/proc/sys/kernel/core_pattern - PoC

257

/proc/sys/kernel/core_pattern - PoC

258

/proc/sys/kernel/core_pattern - PoC

260

/proc/sys/kernel/core_pattern - PoC

261

/proc/sys/kernel/core_pattern - PoC

263

/proc/sys/kernel/core_pattern - PoC

264

/proc/sys/kernel/core_pattern - PoC

266

/proc/sys/kernel/core_pattern - PoC

267

/proc/sys/kernel/core_pattern - PoC

268

/proc/sys/kernel/core_pattern - PoC

269

/proc/sys/kernel/core_pattern - PoC

270

/proc/sys/kernel/core_pattern - PoC

271

/proc/sys/kernel/core_pattern - PoC

272

/proc/sys/kernel/core_pattern - PoC

274

/proc/sys/kernel/core_pattern - PoC

275

/proc/sys/kernel/core_pattern - PoC

276

/proc/sys/kernel/core_pattern - PoC

277

/proc/sys/kernel/core_pattern - PoC

278

/proc/sys/kernel/core_pattern - PoC

279

/proc/sys/kernel/core_pattern - PoC

280

/proc/sys/kernel/core_pattern - PoC

281

/proc/sys/kernel/core_pattern - PoC

282

/proc/sys/kernel/core_pattern - PoC

283

/proc/sys/kernel/core_pattern - PoC

284

/proc/sys/kernel/core_pattern - PoC

285

/proc/sys/kernel/core_pattern - PoC

286

Kernel Thread

/proc/sys/kernel/core_pattern - PoC

287

Formerly Init

/proc/sys/kernel/core_pattern - PoC

288

Our Script

/proc/sys/kernel/core_pattern - PoC

289

/proc/sys/kernel/core_pattern - PoC

290

/proc/sys/kernel/core_pattern - Shell

291

/proc/sys/kernel/core_pattern - Shell

292

/proc/sys/kernel/core_pattern - Shell

293

/proc/sys/kernel/core_pattern - Shell

294

/proc/sys/kernel/core_pattern - Shell

295

/proc/sys/kernel/core_pattern - Shell

296

/proc/sys/kernel/core_pattern - Shell

297

/proc/sys/kernel/core_pattern - Shell

298

/proc/sys/kernel/core_pattern - Shell

299

/proc/sys/kernel/core_pattern - Shell

300

/proc/sys/kernel/core_pattern - Shell

302

/proc/sys/kernel/core_pattern - Shell

303

/proc/sys/kernel/core_pattern - Shell

304

/proc/sys/kernel/core_pattern - Shell

305

/proc/sys/kernel/core_pattern - Shell

306

/proc/sys/kernel/core_pattern - Shell

307

exec -a ...

/proc/sys/kernel/core_pattern - Shell

308

/proc/sys/kernel/core_pattern - Shell

309

/proc/sys/kernel/core_pattern - Shell

310

tl;dr - Normal shell via
the core dump handler

/proc/sys/kernel/core_pattern - Shell

311

tl;dr - "Normal" shell via
the core dump handler

What's a Container? (v5)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

● Chunk of process tree with different answers from the kernel
○ Someone who's escaped a container

312

What's a Container? (v5)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

● Chunk of process tree with different answers from the kernel
○ Someone who's escaped a container

313

What's a Container? (v5)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

● Chunk of process tree with different answers from the kernel
○ Someone who's escaped a container

314

Outside -> In

315

Our Original Goal

322

Working Directory?

323

Working Directory?

324

Working Directory?

325

Working Directory?

326

Working Directory?

327

Working Directory?

328

Working Directory?

329

Working Directory?

330

Chroot?

331

Chroot?

332

Chroot?

333

Chroot?

334

Chroot?

335

Chroot?

336

Chroot?

337

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

338

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

339

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

340

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

341

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

342

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

343

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

344

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

345

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

346

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

347

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

348

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

349

What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

350

Entering A Container - Theory

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

351

Entering A Container - Theory

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

352

Entering A Container - Theory

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

353

Entering A Container - Theory

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

354

Entering A Container - Theory

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● We can be just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

355

Entering A Container - Theory

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● We can be just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?

356

Entering A Container - Theory

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● We can be just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch namespaces from a process in the target container
○ ...whatever "container" means?

357

Entering A Container - Scrolly Text...

358

Entering A Container - Scrolly Text...

359

Entering A Container - Scrolly Text...

360

Entering A Container - Scrolly Text...

361

Entering A Container - Scrolly Text...

362

Entering A Container - Scrolly Text...

363

Entering A Container - Scrolly Text...

364

Entering A Container - Scrolly Text...

365

Entering A Container - Scrolly Text...

366

Or --all

Entering A Container - Scrolly Text...

367

Entering A Container - Scrolly Text...

368

Entering A Container - Scrolly Text...

369

Entering A Container - Scrolly Text...

370

Entering A Container - Scrolly Text...

371

Entering A Container - Scrolly Text...

372

Entering A Container - Scrolly Packets...

373

Entering A Container - Scrolly Packets...

374

Entering A Container - Scrolly Packets...

375

Entering A Container - Scrolly Packets?

376

Entering A Container - Scrolly Packets!

377

Entering A Container - Scrolly Packets.

378

What's a Container? (v6)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

● Chunk of process tree with different answers from the kernel
○ Someone who's escaped a container

● All of the above

379

What's a Container? (v6)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

● Chunk of process tree with different answers from the kernel
○ Someone who's escaped a container

● All of the above

380

In Summary...

1. Hacking containers isn't all that
much different from hacking
using Linux

2. Containers are "just" groups of
Linux processes, with similar
restrictive metadata

3. Escaping is "just" making a
not-restricted process

4. /proc is your friend

Code: github.com/magisterquis/dtffmacac
381

https://github.com/magisterquis/dtffmacac

In Summary...

1. Hacking containers isn't all that
much different from hacking
using Linux

2. Containers are "just" groups of
Linux processes, with similar
restrictive metadata

3. Escaping is "just" making a
not-restricted process

4. /proc is your friend

Code: github.com/magisterquis/dtffmacac

No
tl;dr?

382

https://github.com/magisterquis/dtffmacac

Parting
Thoughts

1. No Secrets, just Docs

2. Code is available
a. But maybe don't read it?

3. Unsecret Weapons:
Make/Rsync/Prove

4. Unscret Hindrance:
Overengineering

5. Do it!

Code: github.com/magisterquis/dtffmacac
383

https://github.com/magisterquis/dtffmacac

Thanks :)
Questions?

384

Twitter/Discord: @magisterquis
Libera: stuart
Code: github.com/magisterquis/dtffmacac

http://github.com/magisterquis/dtffmacac

Thanks :)
No time for questions :(

385

Twitter/Discord: @magisterquis
Libera: stuart
Code: github.com/magisterquis/dtffmacac

http://github.com/magisterquis/dtffmacac

