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● Stuart McMurray
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● Unix Nerd
● Twitter/Discord: @magisterquis
● Github: github.com/magisterquis
● Libera: stuart
● Not affiliated with Docker or any other 

Container anything
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Disclaimers

1. The views and ideas expressed in this talk belong to the speaker and do not 
necessarily reflect the official policy or position of any current or past 
employer.

2. Poking at Containers should be done with care.  Be sure to consult with 
appropriate technical, management, and legal advisors before attempting any 
such activities.
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Compromising Containers?
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Compromising Containers?Philosophical Rambling
- Mrs. McMurray
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What's Compromise?

● Where my application runs and I don't worry about Linux things
○ Application Developer

Suspicious amounts of space...
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Locked-Down Something
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Nefarious Person
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Oh Dear
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Compromised.
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What's a Container?

● Where my application runs and I don't worry about Linux things
○ Application Developer

Suspicious amounts of space...
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What's a Container?

● Where my application runs all nice and self-contained
○ Application Developer
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What's a Container?

● Where my application runs all nice and self-contained
○ Application Developer

IOU: A better container definition
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Self-Contained Application Thing Compromise: Why?

1. It's where things run these days.

¯\_(ツ)_/¯
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Targetspace
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Target - A Single Server
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Target - A Single Server and a Hacker
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Target - A Not Important Server 

25



Target Container - An HTTP Checker
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Target Container 2 - A Password Store
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Target Container 2 - A Password Store
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Running Containers

29



Running Containers

30



Running Containers
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Initial Compromise
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Target - The HTTP Checker
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Excellent Web Devs Were Hired
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Normal HTTP Checker Operations
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Normal HTTP Checker Operations
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This Looks Injectable...
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This Looks Injectable...
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Is This Injectable...
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This Was Injectable!
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This Was Injectable!
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HTTP Checker Container
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HTTP Checker Container, Compromised
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What's a Container? (v2)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

Probably more to the story...
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C2
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● What is it?
○ Command and Control
○ Take control of a thing, via commands

● For Successful (Red Team) C2..
○ Most importantly, it has to work
○ Don't be a jerk (or get caught)
○ Keep it sufficiently simple

● How?
○ Live off the Land (SSH, curl in a loop)
○ Many, many frameworks
○ Custom Code™

■ TODO: Roll your own

tl;dr - Target does what 
you say

C2 in a Nutshell I'm a Teal 
Deer...
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Ask the HTTP Checker to Check HTTP

64



Under the Hood: a Shell
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...a Shell?
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A Shell!
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Connecting to Us
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Connecting to Us with Curl
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Connecting to Us with Curl for Command-Sending
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Connecting to Us with Curl for Output-Receiving
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Shell: Process + Bidirectional Comms
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Shell: Input...

73



Shell: Output :)
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Our Only "Hacker" Tool: curlrevshell
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Setting up a Listener
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A Reverse Shell, With Curl
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A Reverse Shell, With Curl
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Shell Injection
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Shell Injection
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Shell?
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Shell!
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Shell, The First Second
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Shell, The First Second
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What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

Stay tuned...
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What's a Container? (v3)
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/proc
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Situational Awareness - What We Tried
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Situational Awareness - What We Wanted

114



Situational Awareness - What We Kinda Expect
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/proc to the Rescue!

● A Filesystem
○ Not "real" files

● A Window into the Kernel
● With a File-like Interface
● Info about...

○ Processes
○ Devices
○ The Network
○ The Kernel Itself
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Us and a Shell
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Shell, What's Going On?
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Processes Are Running
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Shell Really Spawns ps
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ps Reads Files in /proc
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Files in /proc Describe Processes
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We Get a Process Listing
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We Didn't Get a Process Listing
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Missing ps
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Cut Out the Middleman
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Shell Does the Opening
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Kernel Really Does the Opening
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Shell Connects File to Stdin
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Shell Turns Into cat
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cat Reads Stdin
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Proxies Back to Us
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Process Info without ps
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Process Info without ps
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Process Info without ps
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Interesting Files in /proc

● /proc/$pid/exe
○ Symlink to $pid's executed binary

● /proc/$pid/cmdline
○ $pid's arguments (argv)

● /proc/$pid/environ
○ $pid's environment variables

● /proc/$pid/maps
○ $pid's memory regions and mapped files

● /proc/$pid/mem
○ Interface to $pid's memory (use lseek)

● /proc/$pid/maps
○ Funny symlink to $pid's root directory

● /proc/$pid/fd/
○ $pid's open files

● /proc/net/tcp{,6}
○ TCP sockets

● /proc/mounts
○ Mounted filesystems

● /proc/self
○ Symlink to opening process' /proc/$pid

● /proc/sys/kernel/core_pattern
○ Core dump "location" pattern

● /proc/partitions
○ Disk partitions

● /proc/net/tcp{,6}
○ TCP sockets
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○ Disk partitions
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○ TCP sockets

tl;dr - /proc has 
Systemsy "Files"
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What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

But first, a Side Quest!
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What's a Container? (v3)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

What's that really mean?

Bet we're 
gonna see 

/proc...
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Inside the Container
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Where are we?

162



Where are we, container-style?

163



Where are we, container-style?

164



Where are we, container-style?

165



Where are we, container-style?

166



Where are we, container-style?

167



Where are we, container-style?

168



Where are we, container-style?

169



Where are we, container-style?

170



Where are we, container-style?

171



Where are we, container-style?

172



Where are we, container-style?

173



Where are we, container-style?

174



Where are we, container-style?

175



Secrets in argv?
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Bester Practice: Credentials via Files
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No netstat, No Problem
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No netstat, No Problem
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What Does "Inside" Mean?
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Restrictions

● Namespaces
○ /proc/$pid/ns/
○ mnt
○ pid
○ user
○ net

● Capabilities
○ /proc/$pid/status
○ CAP_SYS_ADMIN
○ CAP_NET_BIND_SERVICE

● Control Groups (cgroups)
● Seccomp Rules

tl;dr - Escaping is getting 
the "normal" set
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Privileged?
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Fair Warning 
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Superpowers?
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Superpowers.

Superpowers

220

Superpowers



chmod 777 + sudo
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chmod 777 + sudo -> --privileged
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What's a Container? (v4)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container
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Container Escape
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Techniques

● Docker/Kubernetes/Contanied/Bottlerocket/etc Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More
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● Docker/Kubernetes/Containerd/Bottlerocket/etc. Socket
○ Can be good for lateral movement
○ Just gets a privileged container

● Control Groups release_agent
○ Only cgroups v1

● Mount a Partition
○ Modify crontab/authorized_keys
○ chroot(8)

● /proc/sys/kernel/core_pattern
○ Shorter-lived system change
○ Less room for oopsing

● Many, Many More

tl;dr - Something inside 
which makes a process 

outside



/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
a. Really, receives one of a handful of signals

2. Kernel reads pattern from 
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed 
process' PID

a. Other template specifiers exist
4. If the pattern starts with a | (pipe), a 

process is started...
a. With argv from the pattern
b. As root
c. As a child of [kthreadd]
d. With the default cgroup/namespaces

5. We get command execution!
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/proc/sys/kernel/core_pattern - Theory

1. Program crashes just right
○ Really, receives one of a handful of signals

2. Kernel reads pattern from 
/proc/sys/kernel/core_pattern

3. %P's in are replaced with the crashed 
process' PID

○ Other template specifiers exist
4. If the pattern starts with a | (pipe), a 

process is started...
○ With argv from the pattern
○ As root
○ As a child of [kthreadd]
○ With the default cgroup/namespaces

5. We get command execution!

tl;dr - Run non-container 
code with the core dump 

handler
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/proc/sys/kernel/core_pattern - Shell
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/proc/sys/kernel/core_pattern - Shell
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tl;dr - Normal shell via 
the core dump handler
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tl;dr - "Normal" shell via 
the core dump handler



What's a Container? (v5)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

● Chunk of process tree with different answers from the kernel
○ Someone who's escaped a container
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Outside -> In
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Our Original Goal
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323



Working Directory?

324



Working Directory?

325



Working Directory?

326



Working Directory?

327



Working Directory?

328



Working Directory?

329



Working Directory?

330



Chroot?
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Chroot?
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What's This Thing Doing?

● Network namespaces aren't hierarchical
○ Nobody can see network things inside a container, right?

● Some programs expect files to be in certain places
○ awscli
○ kubectl

■ Secrets in /run
○ Dependencies (python)

● Really just another process with funny namespaces
○ Don't want to lose Capabilities, switch cgroups, etc.

● Easy answer: mooch from a process in the target container
○ ...whatever "container" means?
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What's a Container? (v6)

● Where my application runs all nice and self-contained
○ Application Developer

● An application running on Linux, plus isolation (and YAML)
○ Systems Administrator

● Linux, but missing bits
○ Someone who's just got a shell

● Processes with restrictive metadata
○ Someone who's fixing to escape a container

● Chunk of process tree with different answers from the kernel
○ Someone who's escaped a container

● All of the above
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In Summary...

1. Hacking containers isn't all that 
much different from hacking 
using Linux

2. Containers are "just" groups of 
Linux processes, with similar 
restrictive metadata

3. Escaping is "just" making a 
not-restricted process

4. /proc is your friend

Code: github.com/magisterquis/dtffmacac
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Parting 
Thoughts

1. No Secrets, just Docs

2. Code is available
a. But maybe don't read it?

3. Unsecret Weapons: 
Make/Rsync/Prove

4. Unscret Hindrance: 
Overengineering

5. Do it!

Code: github.com/magisterquis/dtffmacac
383

https://github.com/magisterquis/dtffmacac


Thanks :)
Questions?
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Twitter/Discord: @magisterquis
Libera: stuart
Code: github.com/magisterquis/dtffmacac

http://github.com/magisterquis/dtffmacac


Thanks :)
No time for questions :(
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