
Becoming the Evil Maid
Breaking Android FDE for Fun and Profit

david@sigma-star.at
2024-11-11



Hi!

David Gstir
› Finds vulns, writes code and manages things @ sigma

star gmbh
› Engineering and consulting around Linux, embedded

devices and security
› Security audits on broad range of topics
› Trainings

david@sigma-star.at Becoming the Evil Maid

https://sigma-star.at
https://sigma-star.at


A Curious Request

It started out by a DM I’ve received:

X: Hi! *Y* told me you could maybe help me recover data from
my Android phone.

me: Sure, do you have a backup?
X: Well yes, but it is not a regular backup. It's a

low-level disk dump of the eMMC and it is encrypted
me: Uhhhmmm oh... Then I have more questions!

david@sigma-star.at Becoming the Evil Maid



A Quest!

Long story short after meeting in person:

› Samsung Galaxy S21 was running Android 11
› Got stuck in boot loop
› Created low-level dump of internal (encrypted) storage
› Flashed stock Android 12 (latest at that time)

david@sigma-star.at Becoming the Evil Maid



Evil Maid Attacks

Similar to an Evil Maid attack:

› Physical access to device
› Goal is to recover data from encrypted storage
› Differences:

› Storage is outside of device (should not make a difference)
› We already know the passcode (owner gave it to us)

david@sigma-star.at Becoming the Evil Maid



Pre-Knowledge

› Android FDE is pretty much the same as Linux
› Android 10+ uses file-based encryption, but is thoroughly documented
› I worked plenty on that, so probably not an issue
› To decrypt all we need is a key (famous last words… ;)
› Assume: keys stored as encrypted blobs somewhere on disk and can only be

decrypted by ARM TrustZone
› User passcode or biometrics have to be involved at some point
› Not much knowledge about how Android uses TrustZone

david@sigma-star.at Becoming the Evil Maid

https://source.android.com/docs/security/features/encryption/file-based


Time to change this!

david@sigma-star.at Becoming the Evil Maid



A First Attempt

› First idea: restore backup and try to boot
› Fail: attempting to downgrade to stock Android 11 does not work
› Samsung flipped an efuse with Android 12 upgrade that prevents downgrades
› Only done in case of major security vulns
› Reason was paper: Trust Dies in Darkness: Shedding Light on Samsung’s

TrustZone Keymaster Design by Shakevsky et al
› They found AES-GCM IV reuse attack in key blob mechanism of ARM TrustZone
› Would have made my task that much easier
› However: They open sourced their tool keybuster with a bunch of details from

their reversing effort

david@sigma-star.at Becoming the Evil Maid

https://eprint.iacr.org/2022/208.pdf
https://eprint.iacr.org/2022/208.pdf


New Plan

› Live off the land: use existing Android 12 on device to mount encrypted backup
› Something similar needs to happen during upgrade from 11 -> 12
› We need rooted device to do that - no issue with Android 12
› Big unknowns:

› Can we still decrypt key blobs from backup after flashing stock Android 12?
› What did Samsung change that I do not know (and do not get with their OSS code)?

david@sigma-star.at Becoming the Evil Maid



Android Storage Encryption

Since Android 9 there are 3 layers of storage encryption:

1. Metadata encryption
2. Device encrypted (DE) storage
3. Credential encrypted (CE) storage

david@sigma-star.at Becoming the Evil Maid



Metadata Encryption

› Lowest encryption layer and first to unlock during boot
› Called dm-default-key - pretty much the same as dm-crypt in Linux
› Encrypts storage blocks and sits beneath filesystem
› Key is added to Kernel via device mapper ioctls: DM_DEV_CREATE,
DM_TABLE_LOAD, DM_DEV_SUSPEND

david@sigma-star.at Becoming the Evil Maid



Device Encrypted Storage

› Second layer of encryption
› Encrypts part of storage that need to be accessible right after boot (before lock

code is provided)
› Uses fscrypt which is part of Linux (Google upstreamed it)
› Encrypts individual files of a filesystem based on per-directory policy
› Implemented only by some filesystems (ext4, f2fs, ubifs, …)
› Key is added to Kernel via fscrypt ioctl: FS_IOC_ADD_ENCRYPTION_KEY

david@sigma-star.at Becoming the Evil Maid



Credential Encrypted Storage

› Last encryption layer protecting user data (profile)
› Also uses fscrypt, so similar to DE storage
› However requires biometrics or passcode to unlock
› Will be hardest part as requires (more) interaction with TrustZone

david@sigma-star.at Becoming the Evil Maid



High-Level Mount Logic

Relevant parts of mount flow during boot. Mainly done by vold service:

› Mount /metadata (is not encrypted)
› Unwrap metadata key
› Attach DM volume userdata using dm-default-key
› Mount volume as /data
› Unwrap DE key and add as fscrypt key
› Unwrap CE key and add as fscrypt key

david@sigma-star.at Becoming the Evil Maid



Master of Keys: Android Keystore (2/2)

The Android Keystore API manages key storage:

› Keymaster TA (Trusted App) in TEE (Trusted Exec. Env. aka TrustZone) is
doing unwrap

› Called via a Kernel interface by Keymaster HAL
› Samsung extra: libkeymaster_helper.so used by Keymaster HAL
› Trick from keybuster: bypass Keymaster HAL checks by simply using
libkeymaster_helper.so

david@sigma-star.at Becoming the Evil Maid



Master of Keys: Android Keystore (2/2)

david@sigma-star.at Becoming the Evil Maid



Yo Android! Where’re Your Keys At?

For dm-default-key searching AOSP source reveals key loaded from files in
/metadata/vold/metadata_encryption/key/:

› secdiscardable: used the generate AppID (logic implemented in vold)
› stretching: contains nopassword so we can ignore it
› encrypted_key: the key we want to decrypt
› keymaster_key_blob: the key used by Keymaster TA to decrypt
encrypted_key; is encrypted with Keymaster internal key

david@sigma-star.at Becoming the Evil Maid



Unwrap, Please! (1/2)

david@sigma-star.at Becoming the Evil Maid



Unwrap, Please! (2/2)

Reversing some functions from libkeymaster_helper.so gives us:

› nwd_begin(...): starts unwrap with key encryption key
› nwd_update(...): performs unwrap with key blob yielding plaintext key
› nwd_finish(...): does cleanup

david@sigma-star.at Becoming the Evil Maid



Full Unwrap Logic

Pseudocode of unwrap logic using libkeymaster_helper.so:

unwrap_vold_key() {
secdiscard = read_file("./secdiscardable");
app_id = generate_appid(secdiscard);
keyblob = read_file("./encrypted_key");
kek = read_file("./keymaster_key_blob");
in_params = generate_in_params(keyblob[:12] /* nonce */);
dummy = {0};
nwd_begin(KM_PURPOSE_DECRYPT, kek, in_params, NULL, &dummy, &handle);
nwd_update(handle, NULL, keyblob[12:], NULL, NULL, &dummy_cnt, &dummy,

&plain_key);
nwd_finish(handle, NULL, NULL, NULL, NULL, NULL, &dummy, NULL);

}

david@sigma-star.at Becoming the Evil Maid



Key Blob Parameters

in_params for Keymaster TA:

› 256-bit AES key
› 128-bit GCM MAC (no padding, 128-bit min MAC length)
› Nonce
› Tag AppID: needs the AppID generated from secdiscardable file
› Tag TAG_NO_AUTH_REQUIRED: no user credentials needed
› Tag TAG_ROLLBACK_RESISTANCE (if possible, re-tries without afterwards)

david@sigma-star.at Becoming the Evil Maid



It’s Alive!

This allows to configure dm-default-keys and attach it.

Minor complications to fix:

› Android 12 added a string prefix to the key blobs, Android 11 does not have this
› Had to fix small bugs in keybuster (e.g. wrong constants)
› Had to find proper parameters to dm-default-key (used dmctl table
userdata)

However, most folders contain garbage -> fscrypt encrypted

david@sigma-star.at Becoming the Evil Maid



Delving Deeper

Now we can mount userdata partition (/data) which holds the key blobs for
fscrypt:

› /data/misc/vold/user_keys/de/0/: user DE (device encrypted)
› /data/misc/vold/user_keys/ce/0: user CE (credential encrypted)
› /data/unencrypted/key: needed to access above folders
› Unwrapping keys in /data/unencrypted/key and
/data/misc/vold/user_keys/de/0/ only required minimal changes to unwrap
logic

david@sigma-star.at Becoming the Evil Maid



Pause: Where We’re At?

› At this point we have access to the whole OS from the backup
› We never needed to supply the user passphrase
› We do need the TrustZone as only it can unwrap key blobs
› Flashing Android 12 did not invalidate key blobs from backup

david@sigma-star.at Becoming the Evil Maid



Getting Into CE Storage

› Next challenge is getting CE key unwrapped
› It will now require the passphrase (which we have)
› Derivation logic is much more involved and requires talking to TEE again
› This time an additional TA is involved: Gatekeeper TA

david@sigma-star.at Becoming the Evil Maid



Lucky Again :-D

The brilliant people at Quarkslab started a similar endeavor in parallel to mine:

› Used a different approach of breaking secure boot (patched boot chain and TZ
OS)

› Great documentation of their work!

david@sigma-star.at Becoming the Evil Maid

https://blog.quarkslab.com/android-data-encryption-in-depth.html


A Bit More To Do…

Figure 1: Key unwrap with passphrase and TrustZone, source: Quarkslab

david@sigma-star.at Becoming the Evil Maid



All Done?

› Nope!
› Involves more reverse engineering - yay!
› I’m currently working on Gatekeeper TA integration
› Check sigma-star.at/blog for in-depth blog post soon
› Check back next year ;-)

david@sigma-star.at Becoming the Evil Maid



Summary

› We can decrypt whole OS of a low-level disk dump only with the device
› Resetting device does not stop us yet
› Without the device this would not work though
› When you loose your device, only your passcode will protect you
› How secure is your passcode? ;-)

david@sigma-star.at Becoming the Evil Maid


	Time to change this!

