
Reverse Engineering and Control Flow
Analysis with Intel Processor Trace
Hagen Paul Pfeifer <hagen@jauu.net>

Introduction and Overview

Objective: Intel PT is a surprisingly powerful tool for understanding how software runs, but it’s still
unfamiliar to many - and not widely documented for reverse engineering use cases. This talk aims
to make Intel PT more accessible and show you how it can transform the way how to analyze program
flow - focusing on RE use cases.

2
$ clang -Xclang -disable-O0-optnone -emit-llvm -S -o f1.ll f1.c
$ opt f1.ll -passes=dot-cfg -cfg-dot-filename-prefix=f1 -disable-output

Agenda

1. Control Flow Analysis: Concepts and Techniques
2. Introduction to Intel Processor Trace
3. Using Perf with Intel PT for Control Flow Analysis
4. Practical Tips and Extensions
5. Q&A and Closing Remarks

3

4

Basic Elements and Concepts
Control Flow Analysis: Concepts and Techniques

Static Analysis:
- Examines code without execution
- Analyzes structure (control/data flow) for design intent

Dynamic Analysis:
- Observes code behavior during execution
- Traces memory, function calls, and control flow

Basic Block:
- A straight-line sequence of instructions with a single

entry point and a single exit point, where the flow of
control enters at the beginning and leaves at the end
without any possibility of branching except at the end

Control Flow Graphs (CFG): logical flow between basic blocks
within a function

Call Graphs: relationships between functions, showing which
functions call others

5

Static Control Flow Analysis
Control Flow Analysis: Concepts and Techniques

Static Control Flow Analysis

- The flow control graph is an important building block in
(static) program analysis

- Control Flow Graph: a map that details execution paths
through basic blocks and control paths

- Basic blocks as nodes and jumps/calls/rets/etc as edges
- Control flow can be constructed on local and

global basis (function).
- Tools: Radare2, Binary Ninja, Ghidra, BinNavi, Hopper, Angr, IDA, …

Disassembly → Building the CFG → Analyzing {Basic Blocks,
Control Structures, Function Analysis, Cross-Referencing}

Goals: understand the flow of a program
- Understanding Program Logic
- Identifying Key Functions
- Detecting Obfuscation

6

Dynamic Flow Control Analysis
Control Flow Analysis: Concepts and Techniques

Static control flow has limits
- Certain control-flow transitions are inherently difficult or

impossible to resolve:
- Indirect Jumps and Calls (jmp eax; call [ebx]), Dynamic

Code Generation, Self-Modifying Code, Data-Driven
Control Flow (wget example.com/.text)

Dynamic Flow Analysis: running it and observing the
behavior in real-time

Why dynamic flow control is crucial
- Static control flow represents all possible branches and

potential paths, but this doesn't reflect actual execution
- For example, a distribution kernel may have 10MiB of .text

section, but only a small fraction of it is executed in reality
- Dynamic flow control captures the real execution paths,

providing accurate insights into the code's behavior

https://github.com/rimsa/CFGgrind

7

Dynamic Control Flow Analysis
Control Flow Analysis: Concepts and Techniques

GDB - best in its class, comprehensive feature set, wide
language, os and arch support, though it lacks built-in
graphical views

R2 - reverse engineering framework and debugger (gdb
too), flexible control flow visualization and scripting.
Optional: use clutter for graphical frontend

DCFG (Intel Pin) - plugin for Intel Pin that dynamically
generates call flow graphs, showing function
relationships in real time, great for visualizing complex
binary structure

CFGgrind (Valgrind) - Linux-based profiling tool with
exhaustive tracing for detailed control flow graphs,
offering depth over speed, ideal for precise analysis

Unicorn Emulation (QEMU) - emulates specific code
segments efficiently, useful for isolated control flow
analysis without full-system

pwndbg (gef, …)

8

Complexity Layers in Reverse Engineering
Control Flow Analysis: Concepts and Techniques

Code Obfuscation: alters code structure to
make it unreadable with techniques like
control flow changes, modifies control flow to
create complex, non-linear paths

Anti-Debugging: detects and disrupts
debuggers using breakpoint and timing
checks

Anti-Tampering: uses checksums or
signatures to prevent unauthorized code
changes

Packers/Cryptors: compress or encrypt
code, only decrypting at runtime

Virtualization Protection: runs code in a
custom virtual machine, complicating
analysis

Self-Modifying Code: dynamically changes
its own instructions during execution

Environmental Checks: alters behavior
based on system configuration to evade
analysis

Anti-Virtualization: detects VMs and
behaves differently or refuses execution

Resource Obfuscation: encrypts data and
resources to hide information

Note: Intel PT won’t solve all challenges, but it can
assist in certain areas and expand the personal
toolkit.

9

What is Intel Processor Trace
Intel Processor Trace

Overview: Intel PT is a hardware-based tracing tool that provides highly detailed insights into
program execution. No sampling

Tracing Scope: Intel PT traces branches, calls, returns, and special events like timestamps or
exceptions in a highly compressed format. Note that unconditional jumps are not traced

Data Decoding: compressed format is decoded to reconstruct the full instruction stream. Since all
control-flow-influencing instructions and their targets are traced, the complete control flow can be
accurately reconstructed.

Performance Efficiency: Data is captured with minimal impact on performance and detectability,
making it valuable for reverse engineering, with an overhead typically between 2% and 15%

Data Volume: Despite the compression, the amount of captured data can still be large (e.g.,
assuming a branch every 5 instructions)

Processor Support: Intel PT has been supported since Broadwell CPUs (2014) as a successor to
Branch Trace Store (BTS)

10

Processor Trace Packets
Intel Processor Trace

Packet Variety: more than 10 packet types are available, each encoding specific types of data

Extended Packet Types: since Skylake, several additional packet types have been introduced,
primarily for time-related data

Configurable Options: configuration options allow some control over some of the generated
packet types

Examples:
- TNT (Taken/Not Taken): Encodes taken and not taken branches in two variants with 6 or 47

decision bits and also encodes returns
- TIP (Target IP): Encodes target addresses for indirect jumps, exceptions, and interrupts
- CBR (Core-Bus Ratio): Indicates changes in the ratio between core and bus clock speeds
- CYC (Cycle Count): Provides elapsed time in core clock cycles, relative to the last CYC packet

11

Raw Recording Information
Intel Processor Trace

PT Recording Start

PT Recording End

r2 -Aq -c "s main; agf" foo

objdump --disassemble=main
--visualize-jumps=color foo

12

Introduction to Perf
Using perf with Intel PT for Control Flow Analysis

Linux Perf: in-kernel performance monitoring framework and userspace tool for profiling system
and application performance, supporting hardware counters, tracepoints and custom event tracking

Events: hw, sw, tracepoint, pmu, sdt and metric's

Recording:

$ perf record –-event pmu/config=M,config1=N,config3=K/ -- <workload>

$ perf record -e intel_pt/ptw,cyc,cyc_thresh=5/u -o perf.data -- foo

Generic Syntax

Intel PT Specific

13

Setting up Perf with Intel PT – Decoding
Using perf with Intel PT for Control Flow Analysis

Decoding is Key: recording is essential, but the true potential unfolds through decoding. Drill deep
and examine data from different angles to analyze vast amounts of information and gain valuable
insights

Advice: start with high-level analysis, then drill down to the instruction level as needed
- Call Trace: perf script --call-trace --ns -F -cpu,-tid,-time
- Assembly Stream: perf script --insn-trace=disasm -F -cpu,-tid,-time

Miscellaneous Decoding: various helpful decoding methods
- Raw Trace: perf script --dump-raw-trace
- Mmap Events: perf script --no-itrace --show-mmap-events
- Branch Focus: perf script --itrace=iybxwpe -F+flags
- Power Events: perf script --itrace=p
- Decoder Debug: perf script --itrace=d

14

Setting up Perf with Intel PT – Decoding
Using perf with Intel PT for Control Flow Analysis

Call Trace Disassembly Trace

Note: Intel XED is no longer required; starting
from version v6.8-rc1-303-g8b767db33095,
libcapstone is used as the disassembly engine

15

Custom Tooling
Using perf with Intel PT for Control Flow Analysis

Post-Processing Needs: sometimes, custom post-processing or integration with other tools is
required. Two options exist

- Parse perf script Output: simple and effective for basic tasks, but can be time-consuming and
computationally intensive

- Integrate directly with perf script: for more complex analyses, it’s recommended to connect
directly within perf script using mechanisms like dlfilter (and dlarg).

$ cat filter.c
int filter_event(void *data, const struct perf_dlfilter_sample *sample, void *ctx)
{
 if (sample->ip) {
 printf("IP: 0x%" PRIx64 "\n", sample->ip);
 }
 return 0;
}
$ gcc -o filter.so -shared -fPIC filter.c -ldl
$ perf script --dlfilter=filter.so

16

Tips for Overcoming Common Challenges
Using perf with Intel PT for Control Flow Analysis

%RIP Filter: limit tracing to specific areas
- perf record -e intel_pt//u --filter 'start 0x1149 @ foo' -- foo
- perf record -e intel_pt//u --filter 'filter main @ foo' -- foo

Disable Return Compression: use /noretcomp/ to trace all "ret" instructions, helpful for obfuscated
code

Limit Recording: restrict to specific processes, CPUs or use snapshot mode to manage data size

Adjust Cycle Threshold: increase cyc_thresh if cycle accuracy isn’t critical to reduce data

PTWRITE for Custom Markers: add PTWRITE instructions to tag and track key events in the trace

Use PEBS: combine with PEBS (if supported) to capture memory access patterns alongside control
flow. Technically works, but combining tracing and sampling is somehow awkward

17

Tips for Overcoming Common Challenges - II
Using perf with Intel PT for Control Flow Analysis

Decoding is intensive: decoding traces can produce significant output files and decoding time

$ perf record -a -e intel_pt// -o perf.data -- sleep 0.01 (10ms on 32 core system)
$ perf script --itrace=i0ns --ns > report.txt
$ ls -lh report.txt perf.data
-rw------- 1 pfeifer pfeifer 2.7M Nov 2 14:17 perf.data
-rw-rw-r-- 1 pfeifer pfeifer 862M Nov 2 14:18 report.txt (--> ~330)

Limit Decoding Timeframe: use --time <start>,<stop> to reduce both data size and decoding
time by focusing on specific sections

Exclude Unneeded Fields: Use: perf script --call-trace -F -cpu,-tid,-time to skip unnecessary
fields, reducing report size and processing load

Mitigate Record Overloads: increase buffer size, limit recording, switch recording setup

18

Limitations of Intel PT in Control Flow Analysis
Conclusions

Limited Instruction Visibility: Intel PT captures only metadata (branches, timestamps) rather than
actual instructions. For JIT-compiled code, self-modifying applications or loaded shellcode the
decoder will fail as it relies on the available ELF objects

No Data Capture: captures instruction flow but lacks functionality to track data flow or data
manipulation and transformations

High Data Volume: Intel PT generates vast amounts of data, making it essential to use filtering or
snapshot mode to manage size and processing time

Platform Limitations:
- ARM Alternative: Intel PT’s counterpart on ARM is CoreSight ETM, which has different

configurations and features
- No AMD Equivalent: AMD lacks an equivalent tracing tool; → exec on Intel(R)

19

Thank you very much!

Let’s Tackle Your Questions!

Got more questions? Feel free to catch me at the event or email me!
hagen@jauu.net

20

Correlate Dynamically Mapped DSO
Appendix

Linux will map DSO pseudo-randomly, see ELF and Address Space Layout Randomization
- Addresses like 0x5583ca2fa2a1 or 7f4180447792 becoming meaningless

Luckely: perf will record mmap events:

$ perf script --no-itrace --show-mmap-events
cms 108632 [023] 124501.882184: PERF_RECORD_MMAP2 108632/108632: [0x5583ca2fa000(0x1000) @ 0x1000 103:02
25874047 2058819998]: r-xp cms
cms 108632 [023] 124501.882202: PERF_RECORD_MMAP2 108632/108632: [0x7f4180604000(0x27000) @ 0x1000 103:02
27829660 3107761507]: r-xp /usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2
cms 108632 [023] 124501.882211: PERF_RECORD_MMAP2 108632/108632: [0x7f4180601000(0x2000) @ 0 00:00 0 0]:
r-xp [vdso]
cms 108632 [023] 124501.882297: PERF_RECORD_MMAP2 108632/108632: [0x7f4180419000(0x15a000) @ 0x28000 103:02
27829672 2718021217]: r-xp /usr/lib/x86_64-linux-gnu/libc.so.6

 file-offset = [address] - start + offset
 4769 = 0x5583ca2fa2a1 - 0x5583ca2fa000 + 0x1000

21

Copyright © 2024 Hagen Paul Pfeifer

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Names and brands may be claimed as the

property of others. Linux is the registered trademark of Linus Torvalds in the U.S.
and other countries.

All statements here are made in a personal capacity and are not affiliated with my
employer.

This presentation was created with the highest quality standards, but errors may
still be present. No warranties are made for any damages resulting from text or

code examples.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

Redistribution is encouraged! Not for use in AI/LLM training or commercial
applications

